Integrating petroelastic modeling, stochastic seismic inversion, and Bayesian probability classification to reduce uncertainty of hydrocarbon prediction: Example from Malay Basin

Author:

Babasafari Amir Abbas1ORCID,Ghosh Deva P.2,Salim Ahmed M. A.1,Kordi Masoumeh3

Affiliation:

1. Universiti Teknologi PETRONAS, Center of Seismic Imaging and Hydrocarbon Prediction, Geoscience Department, Tronoh, Perak 32610, Malaysia.(corresponding author); .

2. Deceased, formerly Universiti Teknologi PETRONAS, Center of Seismic Imaging and Hydrocarbon Prediction, Geoscience Department, Tronoh, Perak 32610, Malaysia.

3. Shahrood University of Technology, Faculty of Earth Sciences, Shahrood, Iran..

Abstract

Exploring hydrocarbon in structural-stratigraphical traps is challenging due to the high lateral variation of lithofluid facies. In addition, reservoir characterization is getting more obscure if the reservoir layers are thin and below the seismic vertical resolution. Our objectives are to reduce the uncertainty of reserve estimation and to predict hydrocarbon distribution more accurately in such reservoir layers by proposing a new workflow that works better than the conventional one. The approach was performed by integrating petroelastic modeling, stochastic elastic seismic inversion, and Bayesian probability classification in the upper reservoir layer of Group E in the Northern Malay Basin. A robust petroelastic model was initially built to obtain more obvious separation of different lithofluid classes in elastic properties crossplot, that is acoustic impedance versus [Formula: see text] ratio. To achieve reliable distribution of elastic properties per identified lithofluid class, a Monte Carlo simulation was then run and the posterior probability of all classes was computed using Bayesian classification, followed by confusion matrix assessment. Stochastic elastic seismic inversion was carried out on conditioned seismic data to predict elastic properties away from the wells. Using all elastic properties realizations, ranking was calculated and uncertainty was quantified at the blind well location. The most probable scenario is the realization that has a much closer probability to the measured criterion value at the blind well. The computed posterior probability of hydrocarbon-bearing sand was applied on the selected stochastic realization (acoustic impedance and [Formula: see text] volumes) according to the ranking result. Finally, the hydrocarbon distribution probability map was generated and validated with lithofluid facies information of four distributed wells. Such a comparison authenticated the hydrocarbon prediction particularly at the blind well location.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3