The diagnostic potential and barriers of microbiome based therapeutics

Author:

Acharjee Animesh1234ORCID,Singh Utpreksha5,Choudhury Saptamita Paul6,Gkoutos Georgios V.12347

Affiliation:

1. Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK

2. Institute of Translational Medicine, University of Birmingham , Birmingham , UK

3. NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham , Birmingham , UK

4. MRC Health Data Research UK (HDR UK) , Birmingham , UK

5. Department of Health and Life Sciences , Coventry University , Coventry , UK

6. KIIT School of Biotechnology , KIIT University , Bhubaneswar , India

7. NIHR Experimental Cancer Medicine Centre , Birmingham , UK

Abstract

Abstract High throughput technological innovations in the past decade have accelerated research into the trillions of commensal microbes in the gut. The ‘omics’ technologies used for microbiome analysis are constantly evolving, and large-scale datasets are being produced. Despite of the fact that much of the research is still in its early stages, specific microbial signatures have been associated with the promotion of cancer, as well as other diseases such as inflammatory bowel disease, neurogenerative diareses etc. It has been also reported that the diversity of the gut microbiome influences the safety and efficacy of medicines. The availability and declining sequencing costs has rendered the employment of RNA-based diagnostics more common in the microbiome field necessitating improved data-analytical techniques so as to fully exploit all the resulting rich biological datasets, while accounting for their unique characteristics, such as their compositional nature as well their heterogeneity and sparsity. As a result, the gut microbiome is increasingly being demonstrating as an important component of personalised medicine since it not only plays a role in inter-individual variability in health and disease, but it also represents a potentially modifiable entity or feature that may be addressed by treatments in a personalised way. In this context, machine learning and artificial intelligence-based methods may be able to unveil new insights into biomedical analyses through the generation of models that may be used to predict category labels, and continuous values. Furthermore, diagnostic aspects will add value in the identification of the non invasive markers in the critical diseases like cancer.

Funder

Medical Research Council

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Public Health, Environmental and Occupational Health,Health Policy,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3