Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer

Author:

Chernov Andrei V.1,Strongin Alex Y.1

Affiliation:

1. 1Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA

Abstract

AbstractOur review covers the recent epigenetic data that are focused on matrix metalloproteinases (MMPs), their inhibitors (tissue inhibitors of MMPs; TIMPs) and collagen substrates. Twenty-four MMPs, four TIMPs and at least 28 collagen types are known in humans. The MMP activity regulates the functionality of multiple extracellular matrix proteins, cytokines, growth factors and cell signaling and adhesion receptors. Aberrantly enhanced MMP proteolysis affects multiple cell functions, including proliferation, migration and invasion. This aberrant MMP proteolysis is frequently recorded in cancer. Recent evidence, however, indicates that several MMPs function as tumor suppressors in cancer. Their inhibition could have pro-tumorigenic effects (making them anti-targets), counterbalancing the benefits of target inhibition and leading to adverse effects in cancer patients. The current epigenetic data suggest that there are distinct multi-layered epigenetic mechanisms that regulate MMPs, TIMPs and collagens. We show that in certain cancer types, epigenetic signatures of selected MMPs exhibit stem cell-like characteristics. Epigenetic mechanisms appear to play an especially important role in glioblastoma multiforme. Glioblastomas/gliomas synthesize de novo and then deposit collagens into the brain parenchyma. The collagen deposition, combined with an enhanced MMP activity in glioblastomas/gliomas, facilitates rapid invasion of tumor cells through the brain. It is tempting to hypothesize that the epigenetic mechanisms which control MMPs, TIMPs and collagens and, consequently, tumor cell invasion, represent promising drug targets and that in the near future these targets will be challenged pharmacologically.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3