Fractional integrals and derivatives: mapping properties

Author:

Rafeiro Humberto1,Samko Stefan2

Affiliation:

1. Departamento de Matemáticas, Facultad de Ciencias, Cra. 7 # 43–82, Bogotá, COLOMBIA

2. Universidade do Algarve, Departamento de Matemàtica Campus de Gambelas, 8005–139 Faro, PORTUGAL

Abstract

Abstract This survey is aimed at the audience of readers interested in the information on mapping properties of various forms of fractional integration operators, including multidimensional ones, in a large scale of various known function spaces. As is well known, the fractional integrals defined in this or other forms improve in some sense the properties of the functions, at least locally, while fractional derivatives to the contrary worsen them. With the development of functional analysis this simple fact led to a number of important results on the mapping properties of fractional integrals in various function spaces. In the one-dimensional case we consider both Riemann-Liouville and Liouville forms of fractional integrals and derivatives. In the multidimensional case we consider in particular mixed Liouville fractional integrals, Riesz fractional integrals of elliptic and hyperbolic type and hypersingular integrals. Among the function spaces considered in this survey, the reader can find Hölder spaces, Lebesgue spaces, Morrey spaces, Grand spaces and also weighted and/or variable exponent versions.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On generalized fractional operators and related function spaces with applications;Physica D: Nonlinear Phenomena;2024-09

2. Variable-Order Fractional Laplacian and its Accurate and Efficient Computations with Meshfree Methods;Journal of Scientific Computing;2024-03-05

3. Orlicz-Lorentz-Karamata Hardy martingale spaces: inequalities and fractional integral operators;Fractional Calculus and Applied Analysis;2024-02-23

4. Semi-Analytical Solutions for Time-Fractional Fisher Equations via New Iterative Method;Baghdad Science Journal;2023-12-24

5. An Improved Fractional Model of an Electrochemical Capacitor with Accounting of Relaxation Phenomena;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3