Orlicz-Lorentz-Karamata Hardy martingale spaces: inequalities and fractional integral operators

Author:

Hao Zhiwei,Li Libo,Long Long,Weisz FerencORCID

Abstract

AbstractLet $$0<q\le \infty $$ 0 < q , b be a slowly varying function and $$ \Phi : [0,\infty ) \longrightarrow [0,\infty ) $$ Φ : [ 0 , ) [ 0 , ) be an increasing function with $$\Phi (0)=0$$ Φ ( 0 ) = 0 and $$\lim \limits _{r \rightarrow \infty }\Phi (r)=\infty $$ lim r Φ ( r ) = . In this paper, we introduce a new class of function spaces $$L_{\Phi ,q,b}$$ L Φ , q , b which unify and generalize the Lorentz-Karamata spaces with $$\Phi (t)=t^p$$ Φ ( t ) = t p and the Orlicz-Lorentz spaces with $$b\equiv 1$$ b 1 . Based on the new spaces, we introduce five new Hardy spaces containing martingales, the so-called Orlicz-Lorentz-Karamata Hardy martingale spaces and then develop a theory of these martingale Hardy spaces. To be precise, we first investigate several properties of Orlicz-Lorentz-Karamata spaces and then present Doob’s maximal inequalities by using Hardy’s inequalities. The characterization of these Hardy martingale spaces are constructed via the atomic decompositions. As applications of the atomic decompositions, martingale inequalities and the relation of the different martingale Hardy spaces are presented. The dual theorems and a new John-Nirenberg type inequality for the new framework are also established. Moreover, we study the boundedness of fractional integral operators on Orlicz-Lorentz-Karamata Hardy martingale spaces. The results obtained here generalize the previous results for Lorentz-Karamata Hardy martingale spaces as well as for Orlicz-Lorentz Hardy martingales spaces. Especially, we remove the condition that b is non-decreasing as in [38, 39] and the condition $$q_{\Phi ^{-1}}<1/q$$ q Φ - 1 < 1 / q in [24], respectively.

Funder

National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research

Hunan Provincial Science and Technology Department

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Martingale inequalities in Orlicz–Karamata modular spaces;Banach Journal of Mathematical Analysis;2024-06-26

2. Applications of martingale Hardy Orlicz–Lorentz–Karamata theory in Fourier analysis;Banach Journal of Mathematical Analysis;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3