Influence of different surface treatment techniques on properties of rice husk incorporated polymer composites

Author:

Ezenkwa Obinna Emmanuel12,Hassan Azman34,Samsudin Sani Amril1

Affiliation:

1. Enhanced Polymer Engineering Group (EnPro), School of Chemical and Energy Engineering , Universiti Teknologi Malaysia , Skudai , Johor 81310 , Malaysia

2. Building Materials Research and Development Centre , Ebonyi State University , Abakaliki , Nigeria

3. Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia , Skudai 81310, Johor , Malaysia

4. Center of Advanced Composite Materials , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia

Abstract

Abstract Rice husk natural fiber remains a highly abundant, eco-friendly and low-cost reinforcement filler for plastic composites fabrication. Hampered by its low aspect ratio and incompatibility with non-polar polymers, its utilization in reinforcing polymer composites often results in decreased composite properties such as decreased tensile strength, impact strength, percentage elongation, and flexural strength. However, stiffness increases. Various surface treatment techniques such as mercerization, compatibilization, acetylation, electron beam irradiation and plasma surface modification have been employed to improve its compatibility with non-polar matrix polymers. This article critically reviews the influence of these surface modification techniques on the resulting composite properties. Based on the analysis of reinforcing efficiencies of these techniques, their strengths, weaknesses, opportunities, and threats, the authors, therefore, project plasma treatment as the most efficient and eco-friendly technique with prospects for high technological application of rice husk plastic composites.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3