Mechanistic aspects of nanocellulose–cationic starch–colloidal silica systems for papermaking

Author:

BARRIOS NELSON,GARLAND LARDEN,LEIB BRANDON,HUBBE MARTIN

Abstract

Optimization of a chemical additive program for a paper machine can require attention to both colloidal charges and kinetic effects. This work considered an additive program with two negatively charged substances (nanofibrillated cellulose [NFC] and colloidal silica) and two positively charged items (cationic starch and cationic acrylamide copolymer retention aid). Results were shown to depend on charge interactions; however, that clearly was not the whole story. Some findings related to cationic demand, dewatering, fine-particle retention, and flocculation among fibers were best explained in terms of at least partly irreversible complexation interactions between the charged entities. Adjustments in ratios between oppositely charged additives, their sequences of addition, and effects of hydrodynamic shear levels all affected the results. In general, the most promising results were obtained at a cationic starch level of 0.25% to 0.5% based on sheet solids in systems where the cationic starch was used as a pretreatment for NFC.

Publisher

TAPPI

Subject

Mechanical Engineering,General Materials Science,Media Technology,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3