Effect of temporal averaging of meteorological data on predictions of groundwater recharge

Author:

Batalha Marcia S.1,Barbosa Maria C.1,Faybishenko Boris2,van Genuchten Martinus Th.34

Affiliation:

1. Department of Civil Engineering , Federal University of Rio de Janeiro, UFRJ , Rio de Janeiro, RJ , Brazil .

2. Lawrence Berkeley National Laboratory , Berkeley, California, CA , USA .

3. Center for Environmental Studies, CEA , São Paulo State University, UNESP , Rio Claro, SP , Brazil .

4. Department of Earth Sciences , Utrecht University , Utrecht , Netherlands .

Abstract

Abstract Accurate estimates of infiltration and groundwater recharge are critical for many hydrologic, agricultural and environmental applications. Anticipated climate change in many regions of the world, especially in tropical areas, is expected to increase the frequency of high-intensity, short-duration precipitation events, which in turn will affect the groundwater recharge rate. Estimates of recharge are often obtained using monthly or even annually averaged meteorological time series data. In this study we employed the HYDRUS-1D software package to assess the sensitivity of groundwater recharge calculations to using meteorological time series of different temporal resolutions (i.e., hourly, daily, weekly, monthly and yearly averaged precipitation and potential evaporation rates). Calculations were applied to three sites in Brazil having different climatological conditions: a tropical savanna (the Cerrado), a humid subtropical area (the temperate southern part of Brazil), and a very wet tropical area (Amazonia). To simplify our current analysis, we did not consider any land use effects by ignoring root water uptake. Temporal averaging of meteorological data was found to lead to significant bias in predictions of groundwater recharge, with much greater estimated recharge rates in case of very uneven temporal rainfall distributions during the year involving distinct wet and dry seasons. For example, at the Cerrado site, using daily averaged data produced recharge rates of up to 9 times greater than using yearly averaged data. In all cases, an increase in the time of averaging of meteorological data led to lower estimates of groundwater recharge, especially at sites having coarse-textured soils. Our results show that temporal averaging limits the ability of simulations to predict deep penetration of moisture in response to precipitation, so that water remains in the upper part of the vadose zone subject to upward flow and evaporation.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Water Science and Technology

Reference53 articles.

1. Aeschbach-Hertig, W., Gleeson, T., 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geosci., 5, 853–861.

2. Allan, R.P., Soden. B.J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1481.

3. Allan, P., Soden, B.J., John, V.O., Ingram, W., Good, P., 2010. Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, 7 p.10.1088/1748-9326/5/2/025205

4. Allen R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration; Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.

5. ASCE, 2005. The ASCE Standardized Reference Evapotranspiration Equation. Environmental and Water Resources Institute of ASCE, Final Report. American Society of Civil Engineers, Reston, VA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3