Evaluating Evapotranspiration in a Commercial Greenhouse: A Comparative Study of Microclimatic Factors and Machine-Learning Algorithms

Author:

Averbuch NirORCID,Moshelion Menachem

Abstract

AbstractThe FAO-56 Penman-Monteith equation (FPME) is commonly used to calculate evapotranspiration and apply necessary irrigation, based on environmental data usually taken from a single measuring station. In this study, we hypothesized that the accuracy of the FPME is affected by microclimatic changes over time and space within the target area. Therefore, we tested the impact of numerous spatial and temporal environmental measurement points in a commercial greenhouse on the accuracy of the FPME, by comparing its evapotranspiration evaluation to the actual evaporation measured by dozens of weighing lysimeters throughout the year. Additionally, we harnessed the capabilities of machine-learning algorithms to utilize the extensive data acquired for predicting evapotranspiration. Our results revealed that the daily FPME exhibited a -22% to +22% discrepancy in accuracy, as compared to the lysimeters, with overestimation in the winter and underestimation in the summer. Interestingly, using more data points per day led to less accurate FPME evaluation. The conflict between an increased number of data points and a reduction in accuracy was explained by daily hysteresis. Machine-learning algorithms (Decision Tree, Random Forest, XGBoost and Neural Network) showed impressive accuracy in predicting evapotranspiration, when the model dataset contained temporal parameters (R2> 0.918). Furthermore, we demonstrated that spatial sampling had a stronger effect on the accuracy of predictions than the amount of the data collected. Specifically, when we used 10% of the original dataset (3.01e5 entries) with high consideration of spatial measurements, the best-performing models (Random Forest and XGBoost) were highly accurate (R2= 0.913 andR2= 0.935, respectively). The top three most influential features of all models were light, day and hour, underscoring the importance of the temporal dimension. This approach allowed us to explore the potential of leveraging advanced computational methods to improve the estimation of water loss under various environmental conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3