Affiliation:
1. Department of Mathematics, Indian Institute of Science Education and Research Pune (IISER-Pune), Dr. Homi Bhabha Road , Pune – 411008 , India
2. Department of Mathematical Sciences, Florida Institute of Technology , Melbourne , FL 32901 , USA
Abstract
Abstract
This article deals with existence of solutions to the following fractional
p
p
-Laplacian system of equations:
(
−
Δ
p
)
s
u
=
∣
u
∣
p
s
*
−
2
u
+
γ
α
p
s
*
∣
u
∣
α
−
2
u
∣
v
∣
β
in
Ω
,
(
−
Δ
p
)
s
v
=
∣
v
∣
p
s
*
−
2
v
+
γ
β
p
s
*
∣
v
∣
β
−
2
v
∣
u
∣
α
in
Ω
,
\left\{\begin{array}{l}{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u+\frac{\gamma \alpha }{{p}_{s}^{* }}{| u| }^{\alpha -2}u{| v| }^{\beta }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\\ {\left(-{\Delta }_{p})}^{s}v={| v| }^{{p}_{s}^{* }-2}v+\frac{\gamma \beta }{{p}_{s}^{* }}{| v| }^{\beta -2}v{| u| }^{\alpha }\hspace{0.33em}\hspace{0.33em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\hspace{1.0em}\end{array}\right.
where
s
∈
(
0
,
1
)
s\in \left(0,1)
,
p
∈
(
1
,
∞
)
p\in \left(1,\infty )
with
N
>
s
p
N\gt sp
,
α
,
β
>
1
\alpha ,\beta \gt 1
such that
α
+
β
=
p
s
*
≔
N
p
N
−
s
p
\alpha +\beta ={p}_{s}^{* }:= \frac{Np}{N-sp}
and
Ω
=
R
N
\Omega ={{\mathbb{R}}}^{N}
or smooth bounded domains in
R
N
{{\mathbb{R}}}^{N}
. When
Ω
=
R
N
\Omega ={{\mathbb{R}}}^{N}
and
γ
=
1
\gamma =1
, we show that any ground state solution of the aforementioned system has the form
(
λ
U
,
τ
λ
V
)
\left(\lambda U,\tau \lambda V)
for certain
τ
>
0
\tau \gt 0
and
U
U
and
V
V
are two positive ground state solutions of
(
−
Δ
p
)
s
u
=
∣
u
∣
p
s
*
−
2
u
{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{* }-2}u
in
R
N
{{\mathbb{R}}}^{N}
. For all
γ
>
0
\gamma \gt 0
, we establish existence of a positive radial solution to the aforementioned system in balls. When
Ω
=
R
N
\Omega ={{\mathbb{R}}}^{N}
, we also establish existence of positive radial solutions to the aforementioned system in various ranges of
γ
\gamma
.
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献