On the large solutions to a class of k-Hessian problems

Author:

Wan Haitao1

Affiliation:

1. School of Mathematics and Information Science , Shandong Technology and Business University , Yantai , Shandong 264005 , P.R. China

Abstract

Abstract In this paper, we consider the k-Hessian problem S k (D 2 u) = b(x)f(u) in Ω, u = +∞ on Ω, where Ω is a C -smooth bounded strictly (k − 1)-convex domain in R N ${\mathbb{R}}^{N}$ with N ≥ 2, b ∈ C(Ω) is positive in Ω and may be singular or vanish on Ω, fC[0, ∞) ∩ C 1(0, ∞) (or f C 1 ( R ) $f\in {C}^{1}\left(\mathbb{R}\right)$ ) is a positive and increasing function. We establish the first expansions (equalities) of k-convex solutions to the above problem when f is borderline regularly varying and Γ-varying at infinity respectively. For the former, we reveal the exact influences of some indexes of f and principal curvatures of Ω on the first expansion of solutions. For the latter, we find the principal curvatures of Ω have no influences on the expansions. Our results and methods are quite different from the existing ones (including k = N). Moreover, we know the existence of k-convex solutions to the above problem (including k = N) is still an open problem when b possesses high singularity on Ω and f satisfies Keller–Osserman type condition. For the radially symmetric case in the ball, we give a positive answer to this open problem, and then we further show the global estimates for all radial large solutions.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3