Abstract
<p>In this paper, only under the $ q $-$ k $-Keller–Osserman conditions, we consider the existence and global estimates of innumerable radial $ q $-$ k $-convex positive solutions to the $ q $-$ k $-Hessian equation and systems. Our conditions are strictly weaker than those in previous papers.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference45 articles.
1. N. S. Trudinger, X. J. Wang, Hessian measures Ⅱ, Ann. Math., 150 (1999), 579–604. https://doi.org/10.2307/121089
2. L. Bieberbach, $\Delta u = e^{u}$ und die automorphen Funktionen, Math. Ann., 77 (1916), 173–212. https://doi.org/10.1007/BF01456901
3. H. Rademacher, Einige besondere probleme partieller Differentialgleichungen, Rosenberg, New York, 2 (1943), 838–845.
4. H. Wittich, Ganze Lösungen der Differentialgleichung $\Delta u = e^{u}$ (German), Math. Z., 49 (1943), 579–582. https://doi.org/10.1007/BF01174219
5. E. K. Haviland, A note on unrestricted solutions of the differential equation $\Delta u = f(u)$, J. London Math. Soc., s1-26 (1951), 210–214. https://doi.org/10.1112/jlms/s1-26.3.210