Oil mediated green synthesis of nano silver in the presence of surfactants for catalytic and food preservation application

Author:

Pervaiz Seemab123,Bibi Iram2,Hussain Shah Syed Waqar2,Wahab Zain Ul1,Ilyas Hafsa3,Khan Ahmad4,Khan Muhammad5,Zada Amir6

Affiliation:

1. Department of Conservation Studies , Hazara University , Mansehra , Pakistan

2. Department of Chemistry , Hazara University , Mansehra , Pakistan

3. Department of Chemistry , Quaid e Azam University , Islamabad , Pakistan

4. Department of Oral and Maxillofacial Surgery Bacha Khan Medical College Mardan , Khyber Pakhtunkhwa , 23200 Pakistan

5. School of Materials Science and Engineering , Northwestern Polytechnical University , Xian , 710072 , P. R. China

6. Department of Chemistry , Abdul Wali Khan University Mardan , Khyber Pakhtunkhwa , 23200 Pakistan

Abstract

Abstract The present study details the green synthesis of silver nanoparticles using clove oil as a reducing and stabilizing agent. Cationic, anionic, nonionic and zwitterionic surfactants were introduced to study the change in size, shape, and morphology of nanoparticles. The nanoparticles were characterized using different techniques. The nanoparticles had shown specific surface Plasmon resonance band with absorbance between 380 and 385 nm. The X-ray diffraction study revealed that the nanoparticles are composed of spherical cubic crystals with average size between 136 and 180 nm while Dynamic Laser scattering (DLS) studies revealed an effective diameter of 82 nm and polydispersity index of 0.005. Thermogravimetric analysis suggested that the particles are stable even at 600 °C. All the samples presented good antibacterial and antifungal efficacies against Staphylococcus aureus, Klebsiella pneumonia and Candida albicans and good catalytic activities for the degradation of fast green and Allura red dyes. Further, thin edible films of the nanoparticles were prepared using sodium alginate for food preservation. The films were coated on fruits and vegetables for extending their shelf life to cope with demand and supply gap.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3