Green and eco-friendly synthesis of TiO2 nanoparticles and their application for removal of cadmium from wastewater: reaction kinetics study

Author:

Irshad Muhammad Atif12,Shakoor Muhammad Bilal3,Nawaz Rab2,Yasmeen Tahira1,Arif Muhammad Saleem1,Rizwan Muhammad1,Rehman Muhammad Zia ur4,Ahmad Sajid Rashid3,Latif Maria12,Nasim Iqra15,Ali Shafaqat16

Affiliation:

1. Department of Environmental Sciences and Engineering , Government College University Faisalabad , Faisalabad , 38000 , Pakistan

2. Department of Environmental Sciences , The University of Lahore , Lahore , 54000 , Pakistan

3. Colleges of Earth and Environmental Sciences, University of the Punjab , Lahore 54000 , Pakistan

4. Institute of Soil and Environmental Sciences, University of Agriculture , Faisalabad 38040 , Pakistan

5. Department of Environmental Sciences , Lahore College for Women University , Lahore , Pakistan

6. Department of Biological Sciences and Technology , China Medical University , Taichung , 40402 , Taiwan

Abstract

Abstract The heavy metal cadmium (Cd) is known to be a widespread environmental contaminant and a potential toxin that may adversely affect human health across the globe. Green nanotechnology has recently received a lot of attention for developing eco-friendly, low-cost renewable and sustainable materials for the efficient removal of persistent contaminants from wastewater, including heavy metals (HMs). The current study compared the ability of titanium dioxide nanoparticles (TiO2 NPs) synthesized from Trianthema portulacastrum (A) and Chenopodium quinoa (B) extracts to remove Cd from wastewater. The washed biomass of both the plants was dried under shade for a few days and was ground into the fine particles in a blender. The powdered biomass of T. portulacastrum and C. quinoa was soaked separately in distilled water (@ 10 g/100 ml) for 36 h. The stock solution of titanium (0.3 M) was prepared from concentrated titanium tetraisopropoxide (TTIP) and was mixed with the plant extracts at 1:2 ratio of extract to TTIP solution with continuous stirring at room temperature. A light brown scum like TiO2-NPs were obtained at the bottom of china dish and calcined at 450 °C for 4 h. Finally, after natural cooling, the TiO2-NPs were collected and used for the sorption of Cd through wastewater. Sorption attributes of both TiO2 NPs (A, B) were investigated over contact time, dosage of adsorbent, pH, and initial concentration of Cd. Maximum sorption was obtained (46 mgg−1) by TiO2 NPs (A), followed by 44 mg Cd g−1 with TiO2 NPs (B) at pH 4.2, an optimum adsorbent dosage 0.7 g L−1, Cd initial level 30 mg L−1, with contact time of 2 h. Pseudo-second-order kinetic model was suited for adsorption experimental data using both nanoparticles. These results validated the potential use of TiO2 NPs to remove liquified cadmium at high concentrations from the industrial wastewater.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3