Classification of tree species composition using a combination of multispectral imagery and airborne laser scanning data

Author:

Sedliak Maroš1,Sačkov Ivan1,Kulla Ladislav1

Affiliation:

1. National Forest Centre - Forest Research Institute Zvolen, T. G. Masaryka 2175/22, SK – 960 92 Zvolen , Slovak Republic

Abstract

Abstract Remote Sensing provides a variety of data and resources useful in mapping of forest. Currently, one of the common applications in forestry is the identification of individual trees and tree species composition, using the object-based image analysis, resulting from the classification of aerial or satellite imagery. In the paper, there is presented an approach to the identification of group of tree species (deciduous - coniferous trees) in diverse structures of close-to-nature mixed forests of beech, fir and spruce managed by selective cutting. There is applied the object-oriented classification based on multispectral images with and without the combination with airborne laser scanning data in the eCognition Developer 9 software. In accordance to the comparison of classification results, the using of the airborne laser scanning data allowed identifying ground of terrain and the overall accuracy of classification increased from 84.14% to 87.42%. Classification accuracy of class “coniferous” increased from 82.93% to 85.73% and accuracy of class “deciduous” increased from 84.79% to 90.16%.

Publisher

Walter de Gruyter GmbH

Subject

Forestry

Reference37 articles.

1. Andersen, H. E., Breindenbach, J., 2007: Statistical Properties of Mean Stand Biomass Estimators in a Lidar- Based Double Sampling Forest Survey Design. Proc. ISPRS III/3, III/4, V/3 and VIII/11., “LaserScanning 2007 and SilviLaser 2007“, p. 8-14.

2. Baatz, M., Schäpe, M., 2000: Multiresolution segmentation - An optimization approach for high quality multi-scale image segmentation. In: Strobl, J., Blaschke, T., Griesebner, G. (eds.): Angewandte Geographische Informations- Verarbeitung XII. Wichmann Verlag, Karlsruhe, p. 12-23.

3. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M., 2004: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58:239-258.

4. Blaschke, T., 2010: Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65:2-16.

5. Bucha, T., Vladovič, J., Juriš, M., Barka, I., 2010: Aplikácie diaľkového prieskumu Zeme využiteľné v prácach HÚL. In: Súčasnosť a budúcnosť hospodárskej úpravy lesov na Slovensku, 10 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3