Individual Tree Species Identification Based on a Combination of Deep Learning and Traditional Features

Author:

Chen Caiyan123,Jing Linhai2,Li Hui1ORCID,Tang Yunwei2ORCID,Chen Fulong124ORCID

Affiliation:

1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

4. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education & School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China

Abstract

Accurate identification of individual tree species (ITS) is crucial to forest management. However, current ITS identification methods are mainly based on traditional image features or deep learning. Traditional image features are more interpretative, but the generalization and robustness of such methods are inferior. In contrast, deep learning based approaches are more generalizable, but the extracted features are not interpreted; moreover, the methods can hardly be applied to limited sample sets. In this study, to further improve ITS identification, typical spectral and texture image features were weighted to assist deep learning models for ITS identification. To validate the hybrid models, two experiments were conducted; one on the dense forests of the Huangshan Mountains, Anhui Province and one on the Gaofeng forest farm, Guangxi Province, China. The experimental results demonstrated that with the addition of image features, different deep learning ITS identification models, such as DenseNet, AlexNet, U-Net, and LeNet, with different limited sample sizes (480, 420, 360), were all enhanced in both study areas. For example, the accuracy of DenseNet model with a sample size of 480 were improved to 87.67% from 85.41% in Huangshan. This hybrid model can effectively improve ITS identification accuracy, especially for UAV aerial imagery or limited sample sets, providing the possibility to classify ITS accurately in sample-poor areas.

Funder

Innovative Research Program of the International Research Center of Big Data for Sustainable Development Goals

National Natural Science Foundation of China

Jiangxi Provincial Technology Innovation Guidance Program

Second Tibetan Plateau Scientific Expedition and Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3