Affiliation:
1. Rue de la Brasserie 5 7100 La Louvière , Belgium
2. Institute of Informatics University of Białystok, Białystok , Poland
Abstract
Summary
In the article, we continue the formalization of the work devoted to Tarski’s geometry - the book “Metamathematische Methoden in der Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. After we prepared some introductory formal framework in our two previous Mizar articles, we focus on the regular translation of underlying items faithfully following the abovementioned book (our encoding covers first seven chapters). Our development utilizes also other formalization efforts of the same topic, e.g. Isabelle/HOL by Makarios, Metamath or even proof objects obtained directly from Prover9. In addition, using the native Mizar constructions (cluster registrations) the propositions (“Satz”) are reformulated under weaker conditions, i.e. by using fewer axioms or by proposing an alternative version that uses just another axioms (ex. Satz 2.1 or Satz 2.2).
Subject
Applied Mathematics,Computational Mathematics
Reference12 articles.
1. [1] Michael Beeson and Larry Wos. OTTER proofs in Tarskian geometry. In International Joint Conference on Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 495-510. Springer, 2014. doi: 10.1007/978-3-319-08587-6 38.10.1007/978-3-319-08587-638
2. [2] Gabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi: 10.1007/s10817-016-9374-4.10.1007/s10817-016-9374-4
3. [3] Roland Coghetto and Adam Grabowski. Tarski geometry axioms - Part II. Formalized Mathematics, 24(2):157-166, 2016. doi: 10.1515/forma-2016-0012.10.1515/forma-2016-0012
4. [4] Sana Stojanovic Durdevic, Julien Narboux, and Predrag Janiˇcic. Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4):249-269, 2015.
5. [5] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of ACSIS - Annals of Computer Science and Information Systems, pages 373-381, 2016. doi: 10.15439/2016F290.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献