Tarski Geometry Axioms. Part III

Author:

Coghetto Roland1,Grabowski Adam2

Affiliation:

1. Rue de la Brasserie 5 7100 La Louvière , Belgium

2. Institute of Informatics University of Białystok, Białystok , Poland

Abstract

Summary In the article, we continue the formalization of the work devoted to Tarski’s geometry - the book “Metamathematische Methoden in der Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. After we prepared some introductory formal framework in our two previous Mizar articles, we focus on the regular translation of underlying items faithfully following the abovementioned book (our encoding covers first seven chapters). Our development utilizes also other formalization efforts of the same topic, e.g. Isabelle/HOL by Makarios, Metamath or even proof objects obtained directly from Prover9. In addition, using the native Mizar constructions (cluster registrations) the propositions (“Satz”) are reformulated under weaker conditions, i.e. by using fewer axioms or by proposing an alternative version that uses just another axioms (ex. Satz 2.1 or Satz 2.2).

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics

Reference12 articles.

1. [1] Michael Beeson and Larry Wos. OTTER proofs in Tarskian geometry. In International Joint Conference on Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 495-510. Springer, 2014. doi: 10.1007/978-3-319-08587-6 38.10.1007/978-3-319-08587-638

2. [2] Gabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi: 10.1007/s10817-016-9374-4.10.1007/s10817-016-9374-4

3. [3] Roland Coghetto and Adam Grabowski. Tarski geometry axioms - Part II. Formalized Mathematics, 24(2):157-166, 2016. doi: 10.1515/forma-2016-0012.10.1515/forma-2016-0012

4. [4] Sana Stojanovic Durdevic, Julien Narboux, and Predrag Janiˇcic. Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4):249-269, 2015.

5. [5] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of ACSIS - Annals of Computer Science and Information Systems, pages 373-381, 2016. doi: 10.15439/2016F290.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tarski Geometry Axioms. Part V – Half-planes and Planes;Formalized Mathematics;2023-09-01

2. Tarski Geometry Axioms. Part IV – Right Angle;Formalized Mathematics;2019-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3