Affiliation:
1. Rue de la Brasserie 5, 7100 La Louvière , Belgium
2. Institute of Informatics , University of Białystok Poland
Abstract
Summary
In the article, we continue [7] the formalization of the work devoted to Tarski’s geometry – the book “Metamathematische Methoden in der Geometrie” (SST for short) by W. Schwabhäuser, W. Szmielew, and A. Tarski [14], [9], [10]. We use the Mizar system to systematically formalize Chapter 8 of the SST book.
We define the notion of right angle and prove some of its basic properties, a theory of intersecting lines (including orthogonality). Using the notion of perpendicular foot, we prove the existence of the midpoint (Satz 8.22), which will be used in the form of the Mizar functor (as the uniqueness can be easily shown) in Chapter 10. In the last section we give some lemmas proven by means of Otter during Tarski Formalization Project by M. Beeson (the so-called Section 8A of SST).
Subject
Applied Mathematics,Computational Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献