Pascal’s Theorem in Real Projective Plane

Author:

Coghetto Roland1

Affiliation:

1. Rue de la Brasserie 5, 7100 La Louvière , Belgium

Abstract

Summary In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines. For proving Pascal’s theorem, we use the techniques developed in the section “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s work. With HOL Light, he has the proof of Pascal’s theorem2. For a lemma, we use PROVER93 and OTT2MIZ by Josef Urban4 [12, 6, 7]. We note, that we don’t use Skolem/Herbrand functions (see “Skolemization” in [1]).

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics

Reference14 articles.

1. [1] Jesse Alama. Escape to Mizar for ATPs. arXiv preprint arXiv:1204.6615, 2012.

2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: 10.1007/978-3-319-20615-817.10.1007/978-3-319-20615-817

3. [3] Roland Coghetto. Homography in ℝ ℙ2. Formalized Mathematics, 24(4):239–251, 2016. doi: 10.1515/forma-2016-0020.10.1515/forma-2016-0020

4. [4] Roland Coghetto. Group of homography in real projective plane. Formalized Mathematics, 25(1):55–62, 2017. doi: 10.1515/forma-2017-0005.10.1515/forma-2017-0005

5. [5] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pappus’s Hexagon Theorem in Real Projective Plane;Formalized Mathematics;2021-07-01

2. Klein-Beltrami Model. Part II;Formalized Mathematics;2018-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3