Affiliation:
1. Rue de la Brasserie 5, 7100 La Louvière , Belgium
Abstract
Summary
Tim Makarios (with Isabelle/HOL1) and John Harrison (with HOL-Light2) have shown that “the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski’s axioms except his Euclidean axiom” [2, 3, 15, 4].
With the Mizar system [1], [10] we use some ideas are taken from Tim Makarios’ MSc thesis [12] for formalized some definitions (like the tangent) and lemmas necessary for the verification of the independence of the parallel postulate. This work can be also treated as a further development of Tarski’s geometry in the formal setting [9].
Subject
Applied Mathematics,Computational Mathematics
Reference15 articles.
1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
2. [2] Eugenio Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giornale di Matematiche, 6:284–322, 1868.
3. [3] Eugenio Beltrami. Essai d’interprétation de la géométrie non-euclidéenne. In Annales scientifiques de l’École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251–288. Elsevier, 1869.10.24033/asens.60
4. [4] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Naukowe, Warszawa, 1955 (in Polish).
5. [5] Roland Coghetto. Homography in ℝℙ2. Formalized Mathematics, 24(4):239–251, 2016. doi:10.1515/forma-2016-0020.10.1515/forma-2016-0020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Checking for non-Euclidean latent geometry of biological networks;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06
2. Formalization of the Poincaré Disc Model of Hyperbolic Geometry;Journal of Automated Reasoning;2020-04-30
3. Klein-Beltrami model. Part III;Formalized Mathematics;2020-04-01
4. Cross-Ratio in Real Vector Space;Formalized Mathematics;2019-04-01