Theory of “Critical Points at Infinity” and a Resonant Singular Liouville-Type Equation

Author:

Ahmedou Mohameden1,Ben Ayed Mohamed2

Affiliation:

1. Department of Mathematics, Justus Liebig University Giessen, Arndtstr. 2, 35392 Giessen, Germany

2. Département de Mathématiques, Faculté des Sciences, Université de Sfax, Route Sokra, BP 1171, 3000 Sfax, Tunisia

Abstract

Abstract We consider the following Liouville-type equation on domains of 2 ${\mathbb{R}^{2}}$ under Dirichlet boundary conditions: { - Δ u = ϱ K e u Ω K e u in Ω , u = 0 on Ω , $\left\{\begin{aligned} \displaystyle-\Delta u&\displaystyle=\varrho\frac{Ke^{u% }}{\int_{\Omega}Ke^{u}}&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{% aligned}\right.$ where ϱ ${\varrho\in\mathbb{R}}$ and K is a smooth nonnegative function having N zeros q 1 , , q N ${q_{1},\ldots,q_{N}}$ , which takes in a neighborhood of a zero q j ${q_{j}}$ the following form: K ( x ) = K j ( x ) | x - q j | 2 γ j with K j ( x ) > 0 and γ i such that 0 < γ j := γ j ( q j ) . $K(x)=K_{j}(x)\lvert x-q_{j}\rvert^{2\gamma_{j}}\quad\text{with }K_{j}(x)>0% \text{ and }\gamma_{i}\in\mathbb{R}\text{ such that }0<\gamma_{j}:=\gamma_{j}(% q_{j})\notin\mathbb{N}.$ Using some dynamical and topological tools from the “critical point theory at infinity” of Bahri, we study the critical points at infinity of the related variational problem. Then we derive from our analysis some existence results in the so-called resonant case, that is, when the parameter ϱ is of the form i = 1 σ 8 π ( 1 + γ i ) + i = σ + 1 m 8 π ${\sum_{i=1}^{\sigma}8\pi(1+\gamma_{i})+\sum_{i=\sigma+1}^{m}8\pi}$ for a subset ( q i 1 , , q i σ ) ${(q_{i_{1}},\ldots,q_{i_{\sigma}})}$ of Σ := { q 1 , , q N } ${\Sigma:=\{q_{1},\ldots,q_{N}\}}$ . In particular, we provide an Euler–Poincaré-type criterium for existence of solutions.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference46 articles.

1. Ahmedou M., Ben Ayed M. and Lucia M., On a resonant mean field type equation: A “critical point at infinity” approach, to appear Discrete Contin. Dyn. Syst.

2. Bahri A., Pseudo-Orbits of Contact Forms, Pitman Res. Notes Math. Ser. 173, Longman Scientific & Technical, New York, 1988.

3. Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser. 182, Longman Scientific & Technical, Harlow, 1989.

4. Bahri A., An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 81 (1996), 323–466.

5. Bahri A., Compactness, Adv. Nonlinear Stud. 8 (2008), no. 3, 465–568.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equilibria of vortex type Hamiltonians on closed surfaces;Topological Methods in Nonlinear Analysis;2023-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3