Affiliation:
1. Department of Mathematics, Justus Liebig University Giessen, Arndtstr. 2, 35392 Giessen, Germany
2. Département de Mathématiques, Faculté des Sciences, Université de Sfax, Route Sokra, BP 1171, 3000 Sfax, Tunisia
Abstract
Abstract
We consider the following Liouville-type equation on domains of
ℝ
2
${\mathbb{R}^{2}}$
under Dirichlet boundary conditions:
{
-
Δ
u
=
ϱ
K
e
u
∫
Ω
K
e
u
in
Ω
,
u
=
0
on
∂
Ω
,
$\left\{\begin{aligned} \displaystyle-\Delta u&\displaystyle=\varrho\frac{Ke^{u%
}}{\int_{\Omega}Ke^{u}}&&\displaystyle\text{in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{%
aligned}\right.$
where
ϱ
∈
ℝ
${\varrho\in\mathbb{R}}$
and K is a smooth nonnegative function having N zeros
q
1
,
…
,
q
N
${q_{1},\ldots,q_{N}}$
, which takes in a neighborhood of a zero
q
j
${q_{j}}$
the following form:
K
(
x
)
=
K
j
(
x
)
|
x
-
q
j
|
2
γ
j
with
K
j
(
x
)
>
0
and
γ
i
∈
ℝ
such that
0
<
γ
j
:=
γ
j
(
q
j
)
∉
ℕ
.
$K(x)=K_{j}(x)\lvert x-q_{j}\rvert^{2\gamma_{j}}\quad\text{with }K_{j}(x)>0%
\text{ and }\gamma_{i}\in\mathbb{R}\text{ such that }0<\gamma_{j}:=\gamma_{j}(%
q_{j})\notin\mathbb{N}.$
Using some dynamical and topological tools from the “critical
point theory at infinity” of Bahri, we study the critical points at infinity of the related variational problem. Then we derive from our analysis some existence results in the so-called resonant case, that is, when
the parameter ϱ is of the form
∑
i
=
1
σ
8
π
(
1
+
γ
i
)
+
∑
i
=
σ
+
1
m
8
π
${\sum_{i=1}^{\sigma}8\pi(1+\gamma_{i})+\sum_{i=\sigma+1}^{m}8\pi}$
for a subset
(
q
i
1
,
…
,
q
i
σ
)
${(q_{i_{1}},\ldots,q_{i_{\sigma}})}$
of
Σ
:=
{
q
1
,
…
,
q
N
}
${\Sigma:=\{q_{1},\ldots,q_{N}\}}$
. In particular, we
provide an Euler–Poincaré-type criterium for existence of solutions.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference46 articles.
1. Ahmedou M., Ben Ayed M. and Lucia M.,
On a resonant mean field type equation: A “critical point at infinity” approach,
to appear Discrete Contin. Dyn. Syst.
2. Bahri A.,
Pseudo-Orbits of Contact Forms,
Pitman Res. Notes Math. Ser. 173,
Longman Scientific & Technical, New York, 1988.
3. Bahri A.,
Critical Points at Infinity in Some Variational Problems,
Pitman Res. Notes Math. Ser. 182,
Longman Scientific & Technical, Harlow, 1989.
4. Bahri A.,
An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension,
Duke Math. J. 81 (1996), 323–466.
5. Bahri A.,
Compactness,
Adv. Nonlinear Stud. 8 (2008), no. 3, 465–568.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献