A reliable islanding identification mechanism for DC microgrid using PCC transient signal

Author:

Prince Satyavarta Kumar1ORCID,Panda Kaibalya Prasad1,Affijulla Shaik1,Panda Gayadhar1

Affiliation:

1. Department of Electrical Engineering , National Institute of Technology Meghalaya , Shillong , Meghalaya , India

Abstract

Abstract The islanding detection is a major problem for both AC and DC Microgrids. Failure to do so may result in problems such as system instability, increased non-detection zone, out-of-phase reclosing, personnel safety, and power quality deterioration. To address this issue, this paper presents a reliable island identification method for DC Microgrids that employs a Cumulative Sum of Rate of change of Voltage (CSROCOV) to reduce the non-recognition region. The proposed islanding protection scheme employs point of common coupling (PCC) transient signal to detect islands events. The voltage, power, and current sampling are accumulated from the PCC of the distributed generation terminals. The proposed scheme detects islanding in three test cases with varying power mismatching conditions, while non-islanding events are classified as capacitor switching and faults. The system is modelled and simulated in the MATLAB/Simulink environment, then islanding conditions are applied by turning off the main circuit breaker. Simulation results are presented to verify the methodology under different test cases. The robustness of the proposed scheme is also validated against measurement noise.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protection strategy for fault detection in AC microgrid based on MVMD & differential CUSUM;International Journal of Emerging Electric Power Systems;2024-07-02

2. Challenges and Advancements in Protection of DC Microgrid System-A Comprehensive Review;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2022-12-08

3. Harmonic Mitigation in a Grid Interfacing PV Assisted Three-Phase Multilevel Switched Capacitor Inverter;2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP);2022-07-21

4. Design of Smart Grid And Monitoring System Using IoT;2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP);2022-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3