Protection strategy for fault detection in AC microgrid based on MVMD & differential CUSUM

Author:

Abhisek Akash1ORCID,Biswal Chinmayee2,Rout Pravat Kumar3,Panda Gayadhar1

Affiliation:

1. Department of Electrical Engineering , NIT , Shillong , Meghalaya , India

2. Department of Electrical Engineering , S’O’A University , Bhubaneswar , Odisha , India

3. Department of Electrical and Electronics Engineering , S’O’A University , Bhubaneswar , Odisha , India

Abstract

Abstract In the era of smart grids and microgrids, the transformation of the traditional grid system brings many operational, technical, and economic benefits. However, the complexity of the network due to the integration of various distributed generations (DGs), continuous change of topology, and non-linear load make fault detection a major issue that forces power engineers to focus on. In this paper, a novel fault detection scheme is suggested based on the multivariate variational mode decomposition mode (MVMD) and differential cumulative sum (DCUSUM). As a generalized extension of the original variational mode decomposition (VMD) algorithm for multivariate data residing in multidimensional spaces, the main goal of MVMD is to decompose the input signal into different band-limited intrinsic mode functions (IMFs). Due to the inherent characteristics of being insensitive to noise and very effective in decomposing the local features even with similar frequencies, it is very effective for fault detection in microgrid distribution systems. The proposed DCUSUM algorithm computes the differential cumulative energy for the remaining significant modes. A fault detection index is considered in this approach and applied for fault detection by adaptively through the threshold setting to accurately result in fault detection. To justify the proposed approach, a standard AC microgrid test system is considered and the approach is verified for fault detection under various fault conditions and resistances. The obtained results and the comparative analysis with other methods reflect the better accuracy, robustness, and reliability of the proposed approach.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3