Multi-Stage Optimal Placement of Branch PMU in Active Distribution Network

Author:

Shu Wang,Xiangrui Kong,Zheng Yan,Xiaoyuan Xu,Han Wang

Abstract

Abstract The penetration of distributed generation and electric vehicles requires advanced monitoring and control strategies to maintain the reliable operation of active distribution network (ADN). Phasor measurement unit (PMU), as an advanced measuring device, has been applied in the operation of transmission systems for decades. Recently, it is anticipated that PMUs can be adopted in the distribution network. In this paper, the optimal branch PMU (BPMU) placement is studied. First, an optimization model for the multi-stage BPMU placement is established considering the observability of ADN. Moreover, the weights of buses are designed to consider the influence of uncertain renewable energy generation and loads. Then, probabilistic load flow (PLF) is used to solve power flow with uncertainties, and weights of buses are obtained based on probability distributions of voltage magnitude. Finally, binary integer programming (BIP) is adopted to obtain the locations of BPMUs. The proposed method is tested on customized IEEE 33-bus and PG&E 69-bus distribution network, and the results are compared with those considering other methods.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Reference52 articles.

1. Optimal PMU placement to ensure observability of power system;Fifteenth National Power Systems Conference,2008

2. Optimal PMU placement to ensure observability of power system;Fifteenth National Power Systems Conference,2008

3. Customized optimal μPMU placement method for distribution networks;Power and Energy Engineering Conference. IEEE,2016

4. GPS-synchronized data acquisition: technology assessment and research issues;Hawaii International Conference on System Sciences. IEEE Comput Soc,2006

5. Optimal capacitor placement on radial distribution systems;IEEE Trans Power Deliv,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3