Hybrid data-driven resilience assessment and enhancement of distribution system for cyclone susceptible zones

Author:

Sonal ,Ghosh Debomita

Abstract

AbstractThe sprawl of distribution system towards the need of smart grid, demands better sustenance and adaptation strategies to deal with high-impact low-frequency (HILF) events. One of the predominant causes of HILF events are natural calamities. Therefore, the resilience assessment of the distribution system is inevitable. The contributions majorly focuses on hybrid data driven approach using micro-phasor measurement unit (μ-PMU), for dynamic voltage, current phasors monitoring, and unmanned aerial vehicle (UAV) confirms structural vulnerability of nodes within network. Mesh grid approach, which analyses cyclone trajectory affecting the network, supplemented identification of most vulnerable part within network. However, priorities of vulnerable nodes are corroborated using complex network (CN) theory. This hybrid data driven approach and spatial parameters are used to estimate appropriate mitigation strategies against HILF scenarios. Hence, resilience analysis based on location parameters and dynamic network conditions are further analyzed based on degree of correlation of location dependent resilience with latitude, elevation, and probable water level. Based on susceptible vulnerable nodes, identification of optimum alleviation schemes is adopted and justified using resilience trapezoid. To validate efficacy of the proposed approach, the analysis is tested on IEEE 33-bus distribution network subjected to 5 cyclone prone geographical coordinates for 20 years cyclone data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced progress of network resilience;Europhysics Letters;2024-04-01

2. A novel resilience assessment for active distribution networks including a DER voltage regulation scheme considering windstorms;International Journal of Electrical Power & Energy Systems;2023-11

3. Converging on human-centred industry, resilient processes, and sustainable outcomes in asset management frameworks;Environment Systems and Decisions;2023-09-27

4. Resilience Analysis of Mesh-Grid Integrated Distribution Network using Bayes' Theorem;2023 5th International Conference on Power, Control & Embedded Systems (ICPCES);2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3