A fault detection technique based on line parameters in ring-configured DC microgrid

Author:

Prince Satyavarta Kumar1ORCID,Affijulla Shaik1ORCID,Panda Gayadhar1

Affiliation:

1. Department of Electrical Engineering , NIT Meghalaya , Shillong , India

Abstract

Abstract The integration of distributed generation (DG) units into a DC microgrid presents a research challenge in terms of a proper protection scheme. The network must be protected due to the sudden change in the amplitude and direction of the fault current. In addition, due to the absence of zero-crossing of the DC fault current, protecting the network from these potential faults is a challenging task. The DC fault can be diagnosed using an appropriate detection technique after monitoring the movement of current. In this paper, a least-square estimation (LSE) technique has been adopted, which has been proven to be able to detect the faulty line strongly, so that the fault is detected by estimated parameters. This fault detection technique has been evaluated on six-lines, with faults analyzed on each line. The six-bus DC microgrid is designed in PSS®SINCAL, and the proposed method is simulated in MATLAB. Two sets of simulations are designed to validate the reliability of the proposed method: (1) pole–ground (P–G) and (2) pole–pole (P–P) fault estimation of inductance and capacitance (C) in a separate line. Simulation results show that the proposed methodology can able to accurately detect (i.e., 95% accuracy) the faulty line in the DC microgrid with respect to designated ‘trip’ value. Thus, the proposed fault detection methodology can be utilized for protection of modern DC microgrids. An experimental PV-battery-load-based fault detection technique has been developed in the laboratory and tested under P–P fault conditions in order to validate the effectiveness of the proposed scheme.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protection strategy for fault detection in AC microgrid based on MVMD & differential CUSUM;International Journal of Emerging Electric Power Systems;2024-07-02

2. Polar Fault Characteristics Analysis and Protection Scheme of Microgrid Interconnected in the Platform Area;2024 9th Asia Conference on Power and Electrical Engineering (ACPEE);2024-04-11

3. Detection of Fault in AC Microgrids using Ensemble Empirical Mode Decomposition;2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC);2023-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3