Affiliation:
1. CNRS , LMAP (UMR 5142) Bat. IPRA , Université de Pau et des Pays de l’Adour , Avenue de l’Université, 64013 Pau cedex , France
2. Department of Mathematics , Indian Institute of Technology Delhi , Hauz Khaz , New Delhi - 110016 , India
Abstract
Abstract
In this article, we prove the existence of at least three positive solutions for the following nonlocal singular problem:
{
(
-
Δ
)
s
u
=
λ
f
(
u
)
u
q
,
u
>
0
in
Ω
,
u
=
0
in
ℝ
n
∖
Ω
,
\left\{\begin{aligned} \displaystyle(-\Delta)^{s}u&\displaystyle=\lambda\frac{%
f(u)}{u^{q}},&&\displaystyle u>0\text{ in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{%
n}\setminus\Omega,\end{aligned}\right.
where
(
-
Δ
)
s
{(-\Delta)^{s}}
denotes the fractional Laplace operator for
s
∈
(
0
,
1
)
{s\in(0,1)}
,
n
>
2
s
{n>2s}
,
q
∈
(
0
,
1
)
{q\in(0,1)}
,
λ
>
0
{\lambda>0}
and Ω is a smooth bounded domain in
ℝ
n
{\mathbb{R}^{n}}
. Here
f
:
[
0
,
∞
)
→
[
0
,
∞
)
{f:[0,\infty)\to[0,\infty)}
is a continuous nondecreasing map satisfying
lim
u
→
∞
f
(
u
)
u
q
+
1
=
0
.
\lim_{u\to\infty}\frac{f(u)}{u^{q+1}}=0.
We show that under certain additional assumptions on f, the above problem possesses at least three distinct solutions for a certain range of λ. We use the method of sub-supersolutions and a critical point theorem by Amann [H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Rev. 18 1976, 4, 620–709] to prove our results. Moreover, we prove a new existence result for a suitable infinite semipositone nonlocal problem which played a crucial role to obtain our main result and is of independent interest.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference36 articles.
1. N. Abatangelo,
Large S-harmonic functions and boundary blow-up solutions for the fractional Laplacian,
Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 5555–5607.
10.3934/dcds.2015.35.5555
2. A. Adimurthi, J. Giacomoni and S. Santra,
Positive solutions to a fractional equation with singular nonlinearity,
preprint (2017), https://arxiv.org/abs/1706.01965.
3. H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Rev. 18 (1976), no. 4, 620–709.
10.1137/1018114
4. S. Amghibech,
On the discrete version of Picone’s identity,
Discrete Appl. Math. 156 (2008), no. 1, 1–10.
10.1016/j.dam.2007.05.013
5. D. Applebaum,
Lévy processes—from probability to finance and quantum groups,
Notices Amer. Math. Soc. 51 (2004), no. 11, 1336–1347.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献