Multiplicity results for nonhomogeneous elliptic equations with singular nonlinearities

Author:

Arora Rakesh1

Affiliation:

1. Department of Mathematics and Statistics, Masaryk University, Building 08, Kotlářská 2, Brno, 611 37, Czech Republic

Abstract

<p style='text-indent:20px;'>This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula>-<inline-formula><tex-math id="M2">\begin{document}$ q $\end{document}</tex-math></inline-formula> type and singular nonlinearities</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{alignedat}{2} {} - \mathcal{L}_{p,q} u &amp; {} = \lambda \frac{f(u)}{u^\gamma}, \ u&gt;0 &amp;&amp; \quad\mbox{ in } \, \Omega, \\ u &amp; {} = 0 &amp;&amp; \quad\mbox{ on } \partial\Omega, \end{alignedat} \right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded domain in <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ C^2 $\end{document}</tex-math></inline-formula> boundary, <inline-formula><tex-math id="M6">\begin{document}$ N \geq 1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ \lambda &gt;0 $\end{document}</tex-math></inline-formula> is a real parameter,</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \mathcal{L}_{p,q} u : = {\rm{div}}(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u), $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><inline-formula><tex-math id="M8">\begin{document}$ 1&lt;p&lt;q&lt; \infty $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ \gamma \in (0,1) $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M10">\begin{document}$ f $\end{document}</tex-math></inline-formula> is a continuous nondecreasing map satisfying suitable conditions. By constructing two distinctive pairs of strict sub and super solution, and using fixed point theorems by Amann [<xref ref-type="bibr" rid="b1">1</xref>], we prove existence of three positive solutions in the positive cone of <inline-formula><tex-math id="M11">\begin{document}$ C_\delta(\overline{\Omega}) $\end{document}</tex-math></inline-formula> and in a certain range of <inline-formula><tex-math id="M12">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter estimates and a uniqueness result for double phase problem with a singular nonlinearity;Journal of Mathematical Analysis and Applications;2024-02

2. Singular anisotropic equations with a sign-changing perturbation;Nonlinear Analysis: Modelling and Control;2023-10-27

3. Combined effects in mixed local–nonlocal stationary problems;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2023-09-04

4. Strong comparison principle for a p-Laplace equation involving singularity and its applications;Applied Mathematics Letters;2023-01

5. Asymptotic Radial Solution of Parabolic Tempered Fractional Laplacian Problem;Bulletin of the Malaysian Mathematical Sciences Society;2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3