Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering

Author:

Endtmayer Bernhard1ORCID,Langer Ulrich2ORCID,Wick Thomas3ORCID

Affiliation:

1. Johannes Kepler University Linz , Doctoral Program on Computational Mathematics; and Austrian Academy of Sciences, Johann Radon Institute for Computational and Applied Mathematics, Altenbergerstr. 69, A-4040 Linz , Austria

2. Austrian Academy of Sciences , Johann Radon Institute for Computational and Applied Mathematics , Altenbergerstr. 69, A-4040 Linz , Austria

3. Institute of Applied Mathematics , Leibniz University Hannover , Welfengarten 1, 30167 Hannover , Germany

Abstract

Abstract We derive efficient and reliable goal-oriented error estimations, and devise adaptive mesh procedures for the finite element method that are based on the localization of a posteriori estimates. In our previous work [B. Endtmayer, U. Langer and T. Wick, Two-side a posteriori error estimates for the dual-weighted residual method, SIAM J. Sci. Comput. 42 2020, 1, A371–A394], we showed efficiency and reliability for error estimators based on enriched finite element spaces. However, the solution of problems on an enriched finite element space is expensive. In the literature, it is well known that one can use some higher-order interpolation to overcome this bottleneck. Using a saturation assumption, we extend the proofs of efficiency and reliability to such higher-order interpolations. The results can be used to create a new family of algorithms, where one of them is tested on three numerical examples (Poisson problem, p-Laplace equation, Navier–Stokes benchmark), and is compared to our previous algorithm.

Funder

Austrian Science Fund

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference51 articles.

1. B. Achchab, S. Achchab and A. Agouzal, Some remarks about the hierarchical a posteriori error estimate, Numer. Methods Partial Differential Equations 20 (2004), no. 6, 919–932.

2. A. Agouzal, On the saturation assumption and hierarchical a posteriori error estimator, Comput. Methods Appl. Math. 2 (2002), no. 2, 125–131.

3. G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin and D. Wells, The deal.II library, version 9.0, J. Numer. Math. 26 (2018), no. 4, 173–183.

4. W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Lectures in Math. ETH Zürich, Birkhäuser, Basel, 2003.

5. R. E. Bank, A. Parsania and S. Sauter, Saturation estimates for hp-finite element methods, Comput. Vis. Sci. 16 (2013), no. 5, 195–217.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3