Locally different models in a checkerboard pattern with mesh adaptation and error control for multiple quantities of interest

Author:

Endtmayer Bernhard12ORCID

Affiliation:

1. Leibniz Universität Hannover Institut für Angewandte Mathematik Hannover Germany

2. Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering – Innovation Across Disciplines) Leibniz Universität Hannover Hannover Germany

Abstract

AbstractIn this work, we apply multi‐goal oriented error estimation to the finite element method. In particular, we use the dual weighted residual method and apply it to a model problem. This model problem consist of locally different coercive partial differential equations in a checkerboard pattern, where the solution is continuous across the interface. In addition to the error estimation, the error can be localized using a partition of unity technique. The resulting adaptive algorithm is substantiated with a numerical example.

Publisher

Wiley

Reference42 articles.

1. Variational methods for the solution of problems of equilibrium and vibrations;Courant R.;Bulletin of the American Mathematical Society,1943

2. Finite Elemente

3. A convergent adaptive algorithm for Poisson's equation;Dörfler W.;SIAM Journal on Numerical Analysis,1996

4. Pure and Applied Mathematics;Ainsworth M.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3