Artificial Compressibility Methods for the Incompressible Navier–Stokes Equations Using Lowest-Order Face-Based Schemes on Polytopal Meshes

Author:

Milani Riccardo1,Bonelle Jérôme2,Ern Alexandre3

Affiliation:

1. EDF R&D , 6 Quai Watier, 78400 Chatou ; and CERMICS, Ecole des Ponts, 77455 Marne-la-Vallée , France

2. EDF R&D , 6 Quai Watier, 78400 Chatou , France

3. CERMICS , Ecole des Ponts , 77455 Marne-la-Vallée 2 ; and Inria, 2 rue Simone Iff, 75589 Paris , France

Abstract

Abstract We investigate artificial compressibility (AC) techniques for the time discretization of the incompressible Navier–Stokes equations. The space discretization is based on a lowest-order face-based scheme supporting polytopal meshes, namely discrete velocities are attached to the mesh faces and cells, whereas discrete pressures are attached to the mesh cells. This face-based scheme can be embedded into the framework of hybrid mixed mimetic schemes and gradient schemes, and has close links to the lowest-order version of hybrid high-order methods devised for the steady incompressible Navier–Stokes equations. The AC time-stepping uncouples at each time step the velocity update from the pressure update. The performances of this approach are compared against those of the more traditional monolithic approach which maintains the velocity-pressure coupling at each time step. We consider both first-order and second-order time schemes and either an implicit or an explicit treatment of the nonlinear convection term. We investigate numerically the CFL stability restriction resulting from an explicit treatment, both on Cartesian and polytopal meshes. Finally, numerical tests on large 3D polytopal meshes highlight the efficiency of the AC approach and the benefits of using second-order schemes whenever accurate discrete solutions are to be attained.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference73 articles.

1. J. Aghili, S. Boyaval and D. A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations, Comput. Methods Appl. Math. 15 (2015), no. 2, 111–134.

2. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), no. 1, 15–41.

3. F. Archambeau, N. Méchitoua and M. Sakiz, Code Saturne: A finite volume code for the computation of turbulent incompressible flows – industrial applications, Int. J. Finite Vol. 1 (2004), no. 1, 1–62.

4. M. Arioli, Generalized Golub–Kahan bidiagonalization and stopping criteria, SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 571–592.

5. M. Arioli, C. Kruse, R. Ulrich and N. Tardieu, An iterative generalized Golub–Kahan algorithm for problems in structural mechanics, Technical Report, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3