Author:
Matheus Mota Sousa Felipe,Rodrigues Fonseca Rodolpho
Abstract
Abstract
Evaporation is one of the most standard procedures in many industrial processes. Although its importance, this operation is quite expensive and, to minimize costs, it is applied multiple effect evaporators. In terms of process control, this configuration is more susceptible to disturbances and also more complicated to control due to process non-linearity. In this paper, a two effects evaporator in a feedforward pattern of feeding was controlled by different adaptive strategies of regulatory control. It was developed feedback and feedforward-feedback control loops in which their PID and lead-lag control parameters were modified according to a gain scheduling strategy based on process variable value. It was shown that adaptive strategy used in feedback control led to a better performance against non-adaptive control, reducing ISE, IAE and ITAE criteria by 12.60%, 7.86% and 13.98% respectively, but also the settling time. However, the final control element was affected leading to 59.77% increase of control effort (ISU). On the other hand, feedforward-feedback allowed even more disturbance rejection than adaptive feedback. As example, IAE values were reduced by 29.96% and 48.17% for feedforward-feedback using non-adaptive and adaptive lead-lag control, respectively. Although their better performance, both feedforward-feedback loops increased control effort, reaching even 70 times of feedback ISU value.
Subject
Modelling and Simulation,General Chemical Engineering
Reference50 articles.
1. Disturbance rejection control for multiple-effect falling-film evaporator based on disturbance observer;Trans Inst Measur Control,2015
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献