Computational Antioxidant Capacity Simulation (CAOCS): A Novel Framework of Antioxidant Capacity Profiling

Author:

Idowu Sunday O.

Abstract

Abstract Inconsistent ranking is a well-known drawback of antioxidant capacity (AOC) profiling methodologies that use free-radical species as oxidant. This problem leads to assay results that are not biorelevant. Linear free energy relationships (LFER) theory predicts proton transfer (PT) kinetics as a surrogate for biorelevant hydrogen atom transfer (HAT) kinetics. Computational antioxidant capacity simulation (CAOCS), based on real-time proton transfer kinetics modeling (PTKM) of polyphenols and phenol-like small molecules, inspired a novel AOC profiling methodology. Kinetic data acquired by incremental addition of resorcinol to an oxidized probe (phenol red), was fitted to mono-exponential decay equation (MED). Absorbance decay data from strongly antioxidant phenol-like molecules (e.g. ascorbic acid) and a new chromogenic probe (phenolphthalein) was fitted to MED and bi-exponential decay equation. The preferred model and corresponding best-fit rate constant (Kptt) was identified by comparison of fits, using Akaike’s Information Criterion (AICc). Photometric phenolphthalein assay (PPA)-derived metric was normalized with photometric phenol red assay (PPRA) results by using a function developed from proton concentration differential between phenolphthalein and phenol red, with respect to decay threshold to plateau (assay endpoint) interval. pKa dependence of the CAOCS’ metric is a signature of structure–function relationships, and hence, biorelevance. It is shown, unambiguously, that a combination of two phenolic probe molecules, an analytical system devoid of free radicals, and statistical identification of preferred exponential decay fit to PT kinetics data, constitutes a novel algorithm for AOC profiling of polyphenols and phenol-like molecules. This methodology holds a promise of utility in quality assurance of dietary supplements.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3