Artificial Intelligence (AI) to the Rescue: Deploying Machine Learning to Bridge the Biorelevance Gap in Antioxidant Assays

Author:

Idowu Sunday Olakunle1ORCID,Fatokun Amos Akintayo2ORCID

Affiliation:

1. Laboratory for Pharmaceutical Profiling & Informatics, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo, Nigeria

2. Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK

Abstract

Oxidative stress induced by excessive levels of reactive oxygen species (ROS) underlies several diseases. Therapeutic strategies to combat oxidative damage are, therefore, a subject of intense scientific investigation to prevent and treat such diseases, with the use of phytochemical antioxidants, especially polyphenols, being a major part. Polyphenols, however, exhibit structural diversity that determines different mechanisms of antioxidant action, such as hydrogen atom transfer (HAT) and single-electron transfer (SET). They also suffer from inadequate in vivo bioavailability, with their antioxidant bioactivity governed by permeability, gut-wall and first-pass metabolism, and HAT-based ROS trapping. Unfortunately, no current antioxidant assay captures these multiple dimensions to be sufficiently “biorelevant,” because the assays tend to be unidimensional, whereas biorelevance requires integration of several inputs. Finding a method to reliably evaluate the antioxidant capacity of these phytochemicals, therefore, remains an unmet need. To address this deficiency, we propose using artificial intelligence (AI)-based machine learning (ML) to relate a polyphenol’s antioxidant action as the output variable to molecular descriptors (factors governing in vivo antioxidant activity) as input variables, in the context of a biomarker selectively produced by lipid peroxidation (a consequence of oxidative stress), for example F2-isoprostanes. Support vector machines, artificial neural networks, and Bayesian probabilistic learning are some key algorithms that could be deployed. Such a model will represent a robust predictive tool in assessing biorelevant antioxidant capacity of polyphenols, and thus facilitate the identification or design of antioxidant molecules. The approach will also help to fulfill the principles of the 3Rs (replacement, reduction, and refinement) in using animals in biomedical research.

Publisher

Elsevier BV

Subject

Medical Laboratory Technology,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3