Detecting myocardial scar using electrocardiogram data and deep neural networks

Author:

Gumpfer Nils1ORCID,Grün Dimitri2ORCID,Hannig Jennifer1ORCID,Keller Till2ORCID,Guckert Michael13ORCID

Affiliation:

1. Cognitive Information Systems, KITE-Kompetenzzentrum für Informationstechnologie, Technische Hochschule Mittelhessen – University of Applied Sciences , 61169 Friedberg , Germany

2. Department of Internal Medicine I, Cardiology , Justus-Liebig-University Gießen , 35390 Gießen , Germany

3. Department of MND – Mathematik , Naturwissenschaften und Datenverarbeitung, Technische Hochschule Mittelhessen – University of Applied Sciences , Wilhelm-Leuschner-Straße 13 , 61169 Friedberg , Germany

Abstract

Abstract Ischaemic heart disease is among the most frequent causes of death. Early detection of myocardial pathologies can increase the benefit of therapy and reduce the number of lethal cases. Presence of myocardial scar is an indicator for developing ischaemic heart disease and can be detected with high diagnostic precision by magnetic resonance imaging. However, magnetic resonance imaging scanners are expensive and of limited availability. It is known that presence of myocardial scar has an impact on the well-established, reasonably low cost, and almost ubiquitously available electrocardiogram. However, this impact is non-specific and often hard to detect by a physician. We present an artificial intelligence based approach — namely a deep learning model — for the prediction of myocardial scar based on an electrocardiogram and additional clinical parameters. The model was trained and evaluated by applying 6-fold cross-validation to a dataset of 12-lead electrocardiogram time series together with clinical parameters. The proposed model for predicting the presence of scar tissue achieved an area under the curve score, sensitivity, specificity, and accuracy of 0.89, 70.0, 84.3, and 78.0%, respectively. This promisingly high diagnostic precision of our electrocardiogram-based deep learning models for myocardial scar detection may support a novel, comprehensible screening method.

Funder

Research Campus of Central Hessen

Kerckhoff Heart Research Institute

German Center for Cardiovascular Research e.V.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3