Abstract
ABSTRACTBackgroundEchocardiography is the most common modality for assessing cardiac structure and function. While cardiac magnetic resonance (CMR) imaging is less accessible, CMR can provide unique tissue characterization including late gadolinium enhancement (LGE), T1 and T2 mapping, and extracellular volume (ECV) which are associated with tissue fibrosis, infiltration, and inflammation. While deep learning has been shown to uncover findings not recognized by clinicians, it is unknown whether CMR-based tissue characteristics can be derived from echocardiography videos using deep learning. We hypothesized that deep learning applied to echocardiography could predict CMR-based measurements.MethodsIn a retrospective single-center study, adult patients with CMRs and echocardiography studies within 30 days were included. A video-based convolutional neural network was trained on echocardiography videos to predict CMR-derived labels including wall motion abnormality (WMA) presence, LGE presence, and abnormal T1, T2 or ECV across echocardiography views. The model performance was evaluated in a held-out test dataset not used for training.ResultsThe study population included 1,453 adult patients (mean age 56±18 years, 42% female) with 2,556 paired echocardiography studies occurring on average 2 days after CMR (interquartile range 2 days prior to 6 days after). The model had high predictive capability for presence of WMA (AUC 0.873 [95%CI 0.816-0.922]), however, the model was unable to reliably detect the presence of LGE (AUC 0.699 [0.613-0.780]), native T1 (AUC 0.614 [0.500-0.715]), T2 0.553 [0.420-0.692], or ECV 0.564 [0.455-0.691]).ConclusionsDeep learning applied to echocardiography accurately identified CMR-based WMA, but was unable to predict tissue characteristics, suggesting that signal for these tissue characteristics may not be present within ultrasound videos, and that the use of CMR for tissue characterization remains essential within cardiology.Clinical PerspectiveTissue characterization of the heart muscle is useful for clinical diagnosis and prognosis by identifying myocardial fibrosis, inflammation, and infiltration, and can be measured using cardiac MRI. While echocardiography is highly accessible and provides excellent functional information, its ability to provide tissue characterization information is limited at this time. Our study using a deep learning approach to predict cardiac MRI-based tissue characteristics from echocardiography showed limited ability to do so, suggesting that alternative approaches, including non-deep learning methods should be considered in future research.Graphical AbstractOverview of the study pipeline and results. A large echocardiography dataset involving 2,566 studies from 1,453 patients paired with CMR and echocardiography within 30 days from Cedars-Sinai Medical Center was identified. A convolutional neural network with residual connections and spatiotemporal convolutions was trained to predict each CMR finding and detect abnormal findings from echocardiography. Results showed strong prediction of functional abnormalities, but poor prediction of CMR-specific tissue characterization.
Publisher
Cold Spring Harbor Laboratory