Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer

Author:

Matveyeva Ilona V.1,Burkitbayev Mukhambetkali М.1

Affiliation:

1. Department of General and Inorganic Chemistry , al-Farabi Kazakh National University , al-Farabi, 71 , Almaty , Kazakhstan

Abstract

Abstract Fresh water outflows to sea are a source of marine contamination by radionuclides, most originating from nuclear industry operations. Usually, these lead to small amounts of radionuclides entering the sea, for example, because of the discharge of cooling water. However, under accident conditions large amounts of radionuclides may enter river systems. The extent of radionuclide transport along freshwater systems and their subsequent dispersal in the ocean depends upon their speciation. This manuscript examines the speciation of uranium, with particular reference to sulphate complexes, along the Shu River in Central Asia with a view to predict its transport along such rivers to receiving seas. The speciation of uranium isotopes in the Shu River (at the border of Kazakhstan and Kyrgyzstan) was determined. Calculations were based on the measured concentrations of Ca2+, Mg2+, Na++K+, HCO3 , Cl, SO4 2−, and of uranium isotopes. These calculations were determined by either titrimetric methods, gravimetric methods or, for uranium isotopes, by alpha-particle spectrometry. Almost all uranium was present as one of three soluble complexes, either [UO2OH]+, [UO2(CO3)2(H2O)2]2− or [UO2(CO3)3]4−. However, despite the significant concentration of sulphate-ions in the water, especially for the Lower Shu in Kazakhstan, the probability of uranium being present as of sulphate complexes in the analyzed water was very low. The presence of soluble ions is consistent with their mobility along freshwater systems and their transfer to the marine environment. No evidence of an effect from influxes of sulphate was identified.

Funder

International Science & Technology Center

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3