Uranium Speciation and Bioavailability in Aquatic Systems: An Overview

Author:

Markich Scott J.1

Affiliation:

1. Environment Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia

Abstract

The speciation of uranium (U) in relation to its bioavailability is reviewed for surface waters (fresh- and seawater) and their sediments. A summary of available analytical and modeling techniques for determining U speciation is also presented. U(VI) is the major form of U in oxic surface waters, while U(IV) is the major form in anoxic waters. The bioavailability of U (i.e., its ability to bind to or traverse the cell surface of an organism) is dependent on its speciation, or physicochemical form. U occurs in surface waters in a variety of physicochemical forms, including the free metal ion (U4+or UO22+) and complexes with inorganic ligands (e.g., uranyl carbonate or uranyl phosphate), and humic substances (HS) (e.g., uranyl fulvate) in dissolved, colloidal, and/or particulate forms. Although the relationship between U speciation and bioavailability is complex, there is reasonable evidence to indicate that UO22+and UO2OH+are the major forms of U(VI) available to organisms, rather than U in strong complexes (e.g., uranyl fulvate) or adsorbed to colloidal and/or particulate matter. U(VI) complexes with inorganic ligands (e.g., carbonate or phosphate) and HS apparently reduce the bioavailability of U by reducing the activity of UO22+and UO2OH+. The majority of studies have used the results from thermodynamic speciation modeling to support these conclusions. Time-resolved laser-induced fluorescence spectroscopy is the only analytical technique able to directly determine specific U species, but is limited in use to freshwaters of low pH and ionic strength. Nearly all of the available information relating the speciation of U to its bioavailability has been derived using simple, chemically defined experimental freshwaters, rather than natural waters. No data are available for estuarine or seawater. Furthermore, there are no available data on the relationship between U speciation and bioavailability in sediments. An understanding of this relationship has been hindered due to the lack of direct quantitative U speciation techniques for particulate phases. More robust analytical techniques for determining the speciation of U in natural surface waters are needed before the relationship between U speciation and bioavailability can be clarified.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3