A simple closed-form model to accurately calculate the electromechanical coupling coefficient of CMUTs

Author:

Chowdhury Sazzadur1ORCID

Affiliation:

1. MEMS Lab, Department of Electrical and Computer Engineering , 8637 University of Windsor , Windsor , , Canada

Abstract

Abstract A simple highly accurate closed-form model to calculate the electromechanical coupling coefficient of a capacitive micromachined ultrasonic transducer (CMUT) is presented. The model exploits the electrostatic spring softening phenomenon to derive an expression for the energy converted from electrical to mechanical domain and includes the nonlinear change of the CMUT diaphragm stiffness during large deflections. The model has been validated by comparing the model predicted values with experimental results published elsewhere along with the results predicted by some existing models. The comparison shows that the model predicted values are in excellent agreement with experimental results. The model also enables one to quantify the effects of residual stress, bending, and nonlinear stretching of the diaphragm on the transduction efficiency of CMUTs without any computationally intensive finite element analysis method. The model resolves the ambiguity of the absence of electrostatic spring softening effect in some existing models.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3