Automated end-of-line quality assurance with visual inspection and convolutional neural networks

Author:

Kim Hangbeom1,Frommknecht Andreas1,Bieberstein Bernd1,Stahl Janek1,Huber Marco F.2ORCID

Affiliation:

1. Department Machine Vision and Signal Processing , Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA) , Stuttgart , Germany

2. University of Stuttgart, Institute of Industrial Manufacturing and Management IFF and Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA) , Stuttgart , Germany

Abstract

Abstract End-of-line (EOL) quality assurance of finished components has so far required additional manual inspections and burdened manufacturers with high labor costs. To automate the EOL process, in this paper a fully AI-based quality classification system is introduced. The components are automatically placed under the optical inspection system employing a robot. A Convolutional Neural Network (CNN) is used for the quality classification of the recorded images. After quality control, the component is sorted automatically in different bins depending on the quality control result. The trained CNN models achieve up to 98.7% accuracy on the test data. The classification performance of the CNN is compared with that of a rule-based approach. Additionally, the trained classification model is interpreted by an explainable AI method to make it comprehensible for humans and reassure them about its trustworthiness. This work originated from an actual industrial use case from Witzenmann GmbH. Together with the company, a demonstrator was realized.

Funder

Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Visual Recognition Design of Industrial Robots Based on Panel Recognition Modeling;2024 International Conference on Power Electronics and Artificial Intelligence;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3