Investigation of measurement data of low-coherence interferometry at tilted surfaces in the 3D spatial frequency domain

Author:

Künne Marco1,Hagemeier Sebastian1,Käkel Eireen2,Hillmer Hartmut23,Lehmann Peter13

Affiliation:

1. Department for Measurement Technology , 9178 University of Kassel , Wilhelmshöher Allee 71 , Kassel , Germany

2. Institute of Nanostructure and Analytics (INA) , 9178 University of Kassel , Heinrich-Plett-Str. 40 , Kassel , Germany

3. Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , 9178 University of Kassel , Heinrich-Plett-Str. 40 , Kassel , Germany

Abstract

Abstract The 3D transfer characteristics of interference microscopes and their effect on the interference signals occurring at surface slopes are studied. The interference image stacks acquired during a depth scan are 3D Fourier transformed. This allows a comprehensive frequency domain analysis of the interferograms. The double foil model introduced in a previous publication enables the interpretation of the signal spectra and the underlying transfer behavior of the interferometer using the concept of the Ewald sphere, which is limited by the numerical aperture (NA) of the imaging system. Analysis in the 3D spatial frequency domain directly discloses that the lateral dimensions of the transfer function depend on the axial spatial frequency. In this contribution we investigate measuring objects produced by Nanoimprint-Lithography. The corresponding signal spectra bear information that can be utilized to optimize the subsequent signal processing algorithms. These include envelope and phase evaluation procedures of the interference signals. A narrow bandpass filter is used to actively select certain frequency components in order to improve the robustness of the estimation of the envelope position. Although the shape and width of the envelope are affected, this procedure increases the reliability of the evaluation process and improves the accuracy of the measured topography especially at steeper surface slopes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3