Fibroblast growth factor 23 and its role in phosphate homeostasis in growing children compared to adults

Author:

Jeddi Marjan1ORCID,Heidari Maryam1ORCID,Hatami Neda1ORCID,Ranjbar Omrani Gholam Hossein1ORCID

Affiliation:

1. Endocrine and Metabolism Research Center , Shiraz University of Medical Sciences , Shiraz , Iran

Abstract

Abstract Objectives Phosphate is essential for skeletal mineralization, which is regulated by parathyroid hormone, calcitriol and fibroblast growth factor 23 (FGF23). Serum phosphate is physiologically higher in younger children, but factors that contribute to this physiological state are poorly understood. This study aimed to evaluate phosphate and its regulators in children compared with adults. Materials and methods The participants were children aged 3–11 years and adults older than 20 years of age. Biochemical parameters including calcium, phosphorus, alkaline phosphatase, FGF23, and vitamin D were measured. Fractional excretion of phosphate was calculated, using serum and urine phosphate and creatinine. Results This cross-sectional study was conducted on 45 children (mean age: 9.0 ± 2.1) and 44 adults (mean age: 38.9 ± 11.1). The children had higher serum calcium, phosphate, alkaline phosphatase, and FGF23 (p < 0.001), but fractional excretion of phosphate was greater in adults (14.1 ± 5.7, 11.4 ± 4.4, p = 0.019, 95% confidence interval [CI]: −0.7 to −0.2). Of all individuals, 61.8% had vitamin D deficiency. By multiple regression analysis, entering age, calcium, phosphate, and vitamin D level, the only independent predictor of FGF23 was 1, 25 dihydroxy-vitamin D3 (β: 0.78, p < 0.001, 95% CI: 0.5–1.1, R2: 0.59 for children, and β: 0.59, p < 0.001, 95% CI: 0.5–1.4, R2: 0.45 for adults). Conclusion As far as we know, there is little information regarding the role of FGF23 in physiologic state. In this cross-sectional study no association was found between FGF23 and urinary phosphate excretion in growing children. Further studies with more detail are essential to evaluate phosphate homeostasis during childhood.

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3