Affiliation:
1. Department of Mathematics , 112388 Francisk Skorina Gomel State University , Gomel , Belarus
Abstract
Abstract
A Schmidt group is a finite non-nilpotent group such that every proper subgroup is nilpotent.
In this paper, we prove that if every Schmidt subgroup of a finite group 𝐺 is subnormal or modular, then
G
/
F
(
G
)
G/F(G)
is cyclic.
Moreover, for a given prime 𝑝, we describe the structure of finite groups with subnormal or modular Schmidt subgroups of order divisible by 𝑝.
Reference25 articles.
1. K. A. Al-Sharo and A. N. Skiba,
On finite groups with 𝜎-subnormal Schmidt subgroups,
Comm. Algebra 45 (2017), no. 10, 4158–4165.
2. A. Ballester-Bolinches, R. Esteban-Romero and D. J. S. Robinson,
On finite minimal non-nilpotent groups,
Proc. Amer. Math. Soc. 133 (2005), no. 12, 3455–3462.
3. A. Ballester-Bolinches and L. M. Ezquerro,
Classes of Finite Groups,
Math. Appl. 584,
Springer, Dordrecht, 2006.
4. A. Ballester-Bolinches, S. F. Kamornikov and X. Yi,
Finite groups with 𝜎-subnormal Schmidt subgroups,
Bull. Malays. Math. Sci. Soc. 45 (2022), no. 5, 2431–2440.
5. I. V. Bliznets and V. M. Selkin,
On finite groups with modular Schmidt subgroup,
Probl. Fiz. Mat. Tekh. (2019), no. 4(41), 36–38.