Finite Groups with $$\sigma $$-Subnormal Schmidt Subgroups

Author:

Ballester-Bolinches A.ORCID,Kamornikov S. F.,Yi X.

Abstract

AbstractIf $$\sigma = \{ {\sigma }_{i} : i \in I \}$$ σ = { σ i : i I } is a partition of the set $$\mathbb {P}$$ P of all prime numbers, a subgroup H of a finite group G is said to be $$\sigma $$ σ -subnormal in G if H can be joined to G by means of a chain of subgroups $$H=H_{0} \subseteq H_{1} \subseteq \cdots \subseteq H_{n}=G$$ H = H 0 H 1 H n = G such that either $$H_{i-1}$$ H i - 1 normal in $$H_{i}$$ H i or $$H_{i}/{{\,\mathrm{Core}\,}}_{H_{i}}(H_{i-1})$$ H i / Core H i ( H i - 1 ) is a $${\sigma }_{j}$$ σ j -group for some $$j \in I$$ j I , for every $$i=1, \ldots , n$$ i = 1 , , n . If $$\sigma = \{\{2\}, \{3\}, \{5\}, ... \}$$ σ = { { 2 } , { 3 } , { 5 } , . . . } is the minimal partition, then the $$\sigma $$ σ -subnormality reduces to the classical subgroup embedding property of subnormality. A finite group X is said to be a Schmidt group if X is not nilpotent and every proper subgroup of X is nilpotent. Every non-nilpotent finite group G has Schmidt subgroups and a detailed knowledge of their embedding in G can provide a deep insight into its structure. In this paper, a complete description of a finite group with $$\sigma $$ σ -subnormal Schmidt subgroups is given. It answers a question posed by Guo, Safonova and Skiba.

Funder

Universitat de Valencia

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference11 articles.

1. Ballester-Bolinches, A., Ezquerro, L. M.: Classes of finite groups, vol. 584 of Mathematics and its Applications. Springer, New York (2006)

2. Doerk, K., Hawkes, T.: Finite Soluble Groups. Walter De Gruyter, Berlin/New York (1992)

3. Gol’fand, Ju. A.: On groups all of whose subgroups are special, in Doklady Akad. Nauk SSSR, vol. 60, pp. 1313-1315. Russian (1948)

4. Guo, W., Safonova, I.N., Skiba, A.N.: On -subnormal subgroups of finite groups. Southeast Asian Bull. Math. 45, 813–824 (2021)

5. Hu, B., Huang, J., Skiba, A.N.: Characterization of finite -nilpotent and -quasinilpotent groups. Bull. Malays. Math. Sci. Soc. 42, 2091–2104 (2019)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new formation with Shemetkov property;Communications in Algebra;2024-07

2. Groups with subnormal or modular Schmidt -subgroups;Journal of Group Theory;2024-02-10

3. Finite Groups with $ S $-Conditionally Permutable Schmidt Subgroups;Siberian Mathematical Journal;2024-01

4. FINITE GROUPS WITH HEREDITARILY G-PERMUTABLE SCHMIDT SUBGROUPS;Bulletin of the Australian Mathematical Society;2023-07-28

5. Finite Groups with $ \sigma $-Abnormal Schmidt Subgroups;Siberian Mathematical Journal;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3