Fundamental solution of the multi-dimensional time fractional telegraph equation

Author:

Ferreira Milton12,Rodrigues M. Manuela2,Vieira Nelson2

Affiliation:

1. School of Technology and Management Polytechnic Institute of Leiria P-2411-901 , Leiria , Portugal

2. Center for Research and Development in Mathematics and Applications (CIDMA) , Department of Mathematics University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro , Portugal

Abstract

Abstract In this paper we study the fundamental solution (FS) of the multidimensional time-fractional telegraph equation where the time-fractional derivatives of orders α ∈]0,1] and β ∈]1,2] are in the Caputo sense. Using the Fourier transform we obtain an integral representation of the FS in the Fourier domain expressed in terms of a multivariate Mittag-Leffler function. The Fourier inversion leads to a double Mellin-Barnes type integral representation and consequently to a H-function of two variables. An explicit series representation of the FS, depending on the parity of the dimension, is also obtained. As an application, we study a telegraph process with Brownian time. Finally, we present some moments of integer order of the FS, and some plots of the FS for some particular values of the dimension and of the fractional parameters α and β.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference19 articles.

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 10th printing. National Bureau of Standards, Wiley-Interscience Publication, John Wiley & Sons, New York etc. (1972).

2. R.G. Buschman, H-functions of two variables, III. Pure Appl. Math. Sci. 9 (1978), 13–18.

3. R.G. Buschman, H-functions of two variables, I. Indian J. Math. 20 (1978), 132–153.

4. R.F. Camargo, A.O. Chiacchio, E.C. de Oliveira, Differentiation to fractional orders and the fractional telegraph equation. J. Math. Phys. 49, No 3 (2008), Article ID 033505, 12p; 10.1063/1.2890375.

5. R.C. Cascaval, E.C. Eckstein, L.C. Frota, J.A. Goldstein, Fractional telegraph equations. J. Math. Anal. Appl. 276, No 1 (2002), 145–159; 10.1016/S0022-247X(02)00394-3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3