Well‐posedness and Mittag–Leffler stability for a nonlinear fractional telegraph problem

Author:

Othmani Sakina1,Tatar Nasser‐Eddine2ORCID

Affiliation:

1. E.D.P.N.L. Laboratory, Department of Mathematics Higher Normal School of Kouba Kouba Algiers Algeria

2. Interdisciplinary Research Center for Intelligent Manufacturing & Robotics, Department of Mathematics King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia

Abstract

AbstractThe ordinary diffusion models in continuous media are derived from basic principles: Conservation of energy and momentum. The classical telegraph equation is one of the earliest and most commonly used equation to describe the transmission of electromagnetic waves. In fractal and disordered media, to capture the complex diffusion feature, we consider rather fractional models. Indeed, the mean square displacement in anomalous media is no longer proportional to the time but rather proportional to a power of time whose exponent may be between zero and one or between one and two. This is the case for the present fractional telegraph equation in the presence of non‐negligible voltage wave. Here, the well‐posedness and stability of a telegraph problem with two time‐fractional derivatives is discussed. In addition to being a noninteger problem, the equation in the model is subject to a nonlinear source as well as a nonlinear lower order fractional derivative term. First, the well‐posedness in an appropriate underlying space is established by the use of resolvent operators. Then, it is proved that, despite the presence of these nonlinearities, solutions are Mittag–Leffler stable. This confirms (and extends) the fact that the lower order term plays the role of a damper in the fractional case. To this end, we combine the energy method with some properties of the Caputo fractional derivative.

Funder

King Fahd University of Petroleum and Minerals

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3