Parametric numerical study and optimization of mass transfer and bubble size distribution in a gas-liquid stirred tank bioreactor equipped with Rushton turbine using computational fluid dynamics

Author:

Salehi Sanaz12,Heydarinasab Amir2,Shariati Farshid Pajoum2,Nakhjiri Ali Taghvaie2,Abdollahi Kourosh1

Affiliation:

1. School of Science , RMIT University, Bundoora West Campus , Melbourne , VIC , 3083 , Australia

2. Department of Petroleum and Chemical Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran

Abstract

Abstract Designing and optimizing a bioreactor can be an especially challenging process. Computational modelling is an effective tool to investigate the effects of various operating parameters on bioreactor performance and identify the optimum ones. In this work, a computational fluid dynamics-population balance model (CFD-PBM) was developed to elucidate the effect of different geometrical and operating parameters on the hydrodynamics and mass transfer coefficient of a batch stirred tank bioreactor. The validated model was projected to predict the effect of different parameters including the gas flow rate, the impeller off-bottom clearance, the number of agitator blades, and rotational speed of the impeller on the velocity profiles, air volume fraction, bubble size distribution, and the local gas mass transfer coefficient (K l a) in the bioreactor. Air bubble breakup and coalescence phenomena were considered in all simulations. Factorial experimental design approach was employed to statistically investigate the impacts of the aforementioned operating and geometrical parameters on K l a and bubble size distribution in the bioreactor in order to determine the most significant parameters. This can give an essential insight into the most impactful factors when it comes to designing and scaling up a bioreactor.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3