CFD Study of the Hydrodynamics of Slug Flow Systems: Interaction between Consecutive Taylor Bubbles

Author:

Araújo J. D. P.ORCID,Miranda J. M.,Campos J. B. L. M.

Abstract

Abstract Slug flow is one of the most frequently occurring multiphase flow patterns in industrial processes. A deep knowledge of its fundamentals is necessary to accurately model not only the fluid flow but also reaction and heat and mass transfer in several operation units. A numerical study is reported on the dynamics of slug flow, under laminar regime, in vertical columns of stagnant and co-current Newtonian and non-Newtonian liquids (shear-thickening and shear-thinning). A CFD package (Ansys FLUENT) with the VOF methodology was applied to simulate the flow of individual and pairs of consecutive Taylor bubbles. The behaviour of the most relevant hydrodynamic features with the approach of the trailing bubble towards the leading one is addressed, with particular emphasis to the role of the liquid rheology and flow configuration. The main results presented are the velocity ratio curves between consecutive bubbles, the variation of the bubbles shape, and the axial velocity and viscosity fields in the surrounding liquid. This bubble-bubble interaction data can be a keystone to improve and complement continuous slug flow simulators used for very long columns.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Reference50 articles.

1. Numerical study of a Taylor bubble rising in stagnant liquids;Physical Review E,2010

2. The mechanics of large bubble rising through extended liquids and through liquids in tubes;Proceedings of the Royal Society of London Series A,1950

3. The importance of rheology in mineral flotation: A review;Minerals Engineering,2012

4. Two-phase flow in vertical tubes;Transactions of the Institute of Chemical Engineers,1962

5. Entrance effects in a two-phase slug flow;Journal of Heat Transfer,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3