Affiliation:
1. Massachusetts Institute of Technology, Cambridge, Mass.
Abstract
This paper describes quantitatively one stage of the flow development process in equipment working with two-phase mixtures. The kinetics of a Taylor bubble, as it rises behind a series of other bubbles in a gas-liquid slug flow, have been determined. The rise velocity of a bubble is expressed as a function of separation distance from the bubble ahead of it. Using this information, the pattern of development of bubbles which initially enter a tube at regular intervals is determined by means of finite difference calculations. The density and, to a first approximation the pressure drop, of the developing flow are then calculated from continuity considerations. The density distribution in the entrance region is found to be a function of flow rates of the two phases, of distance from the inlet, and of initial bubble size. Density calculated by the present theory is compared with experimental measurements by the present and other investigators. Theory and experiments are in good agreement.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献