Photocatalytic degradation of acetaminophen from water solutions via thin films part I: preparation, characteriation, and analysis of titanium dioxide thin films

Author:

Rawal Sunil1,Buer Sabrina H.1,Hawkins Wayne2,Sanders Jonathan Robby3,Arce Pedro E.3

Affiliation:

1. School of Environmental Studies , Tennessee Technological University , Cookeville , TN 38502 , USA

2. Center for Manufacturing Research , Tennessee Technological University , Cookeville , TN 38502 , USA

3. Department of Chemical Engineering , Tennessee Technological University , Cookeville , TN 38502 , USA

Abstract

Abstract The utilization of titanium dioxide (TiO2) photocatalysis for water and air purification is a frequently used method due to TiO2 having properties making it chemically inert, highly cost-effective, abundant, non-toxic, and environmentally-friendly. In an effort to increase the efficiency of the degradation process, an in-depth understanding of the effects of the structure and number of thin film coatings is needed. Transparent, anatase-form titanium dioxide thin films were prepared via the sol-gel method and deposited onto microscopic glass slides using a novel spraying technique, with coatings ranging from 1 to 10. Characterization of the TiO2 thin film coated slides was performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The contribution shows that the coating technique is efficient in covering important areas of the surface and that it is suitable for a multiple coating layers thin film. The SEM imagines show that the surface of the slides increase coverage as the number of layers increases. This is potentially suitable for a mechanized spraying approach to upscaling the production of thin films for advanced oxidation applications.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3